
- NAS_
= Technical

z Paper
=--3242

i_

October i992
. ,r

r

_L "

r

= .

,i,, _-_

- ASA

in

Repre
Solu :!ET

Daniel L.

and David

(NASA-TP-3242) ADVANCEO

IN RELIABILITY MODEL
AND SOLUTION (NASA)

ues
Model

and

TECHNIQUES

REPRESENTATION

18 P

/_/-c _ "

/21"_"_ /

/__1 7"

r

HI/66

N92-33483

- ]

Uncl as

J

0121089



m

z

!

r

__ i

jl

L_

r :

r

r

r



NASA
Technical

Paper
3242

1992

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical
Information Program

Advanced Techniques
in Reliability Model
Representation and
Solution

Daniel L. Palumbo

Langley Research Center

Hampton, Virginia

David M. Nicol

College of William and Mary

Williamsburg, Virginia





Nomenclature

AIPS

ASSIST

ASSURE

CH

DIU

FMEA

FMES

FTP

HARP

IAPSA

I/O

NET

NI

RM

RMG

SURE

advanced information processing system

abstract semi-Markov specification interface to SURE tool

none

channel

device interface unit

failure modes-effects analysis

failure modes-effects simulation

fault-tolerant processor

Hybrid Automated Reliability Predictor

integrated airframe/propulsion control system architecture

input/output

network

network interface

redundancy management

reliability model generator

semi-Markov unreliability range evaluator

PRECEDING PAGE ELAi'_K NOT FILMED

111

t 1





Abstract

The current tendency of flight control system designs is towards in-

creased integration of applications and increased distribution of compu-

tational elements. The reliability analysis of such systems is difficult be-

cause subsystem interactions are increasingly interdependent. Researchers

at NASA Langley Research Center have been working for several years

to extend the capability of Markov modelling techniques to address these

problems. This effort has been focused in the areas of increased model

abstraction and increased computational capability. The reliability model

generator (RMG) is a software tool that uses as input a graphical object-

oriented block diagram of the system. RMG uses a failure modes-effects

algorithm to produce the reliability model from the graphical description.

The ASSURE software tool is a parallel processing program that uses

the semi-Markov unreliability range evaluator (SURE) solution technique

and the abstract semi-Markov specification interface to the SURE tool

(ASSIST) modelling language. A failure modes-effects simulation is used

by ASSURE. These tools were used to analyze a significant portion of a

complex ]light control system. The successful combination of the power

of graphical representation, automated model generation, and parallel

computation leads to the conclusion that distributcd fault-tolerant system

architectures can now be analyzed.

Introduction

High reliability in digital systems is achieved, in a

typical design, through redundancy and dynamic re-
configuration. Markov model solution techniques are

commonly used when computing the reliability of this

type of system. The state transition matrix represen-
tation of a Markov model is useful for expressing the

sequence dependencies that can occur during a series

of system failures and subsequent recoveries. How-

ever, distributed, fault-tolerant, and real-time sys-
tems result in extremely large and complex models.

One conclusion of tile integrated airframe/propulsion

control system architecture (IAPSA) program (ref. 1)
is that two factors limit the use of Markov models on

the systems being proposed for the next generation

of aerospace vehicles.

The first factor limiting the use of Markov models

is that the state space grows exponentially with sys-

tem size. This growth confines the size of the system

that can be analyzed to one that can be accommo-

dated by the available computing resources. One ex-
ample is the Hybrid Automated Reliability Predictor

(HARP) (ref. 2). The HARP program presents the

user with a high-level interface consisting primarily
of fault trec input (to describe system failure states)

and fault/error-handling models (to describe recov-

cry processes). This input is then translated into a
Markov model and solved. To limit the size of the

reliability model, HARP uses a process of behavioral

decomposition, aggregation, and truncation at the

third level. An estimate of the resulting model size

for a system with n components is given by

(1)Total number of states = + + 3

(1)

Now, consider the IAPSA architecture, which
consists of over 500 components. The approxima-

tion in equation (1) yields 21 million states. This
approximation does not consider that, as in IAPSA,

component dependencies limit the extent to which
states can be aggregated. As discussed in a sub-

sequent section, an IAPSA submodel with 80 com-

ponents produced 27 million states. The magnitude

of this problem is enormous.

The second factor limiting the use of Markov

models is the difficulty in constructing a model of

a large distributed and integrated system. The com-

plex interdependeneies confound the analyst's under-

standing of system behavior. Again, with IAPSA as
an example, a single failure of a processing channel

has the potential to effect three redundancy manage-

mcnt regimes: the processor, the I/O network, and

the I/O devices. These relationships, which can bc

significant, are at times obscured and threaten the
accuracy of the model.

Researchers at NASA Langley Research Center

have been working for several years to extend the



capabilityof Markovsolution techniquesto sys-
temslike IAPSA.Theseeffortshavetheir founda-
tion in the semi-Markovunreliability rangeeval-
uator (SURE) (refs. 3 and 4) and the abstract
semi-Markovspecificationinterfaceto theSUREtool
(ASSIST)(refs.5 and6). The morerecentefforts
that arethe subjectof this paperincludetile reli-
ability mo&_lgenerator(RMG) (refs.7 and8) and
ASSURE.RMG is basedon an algorithmfor au-
tomatingthefailuremodes-effectsanalysis(FMEA)
that ispartof everyreliabilityanalysis.RMGusesa
graphicallybasedobject-orienteddescriptionof the
systemas input to this algorithm. The output
of RMG is an ASSISTlanguagedescriptionof the
reliability model. ASSUREcombinesthe ASSIST
languagewith tileSUREcomputationaltechniquein
aparallelprogram.ASSUREdoesnotneedto retain
stateinformationandthereforedoesnot sufferfrom
thestate-spacestorageproblem.ASSUREhasalso
extendedthe ASSISTsyntaxto allow referenceto
a failuremodes-effectssimulation(FMES).Features
suchasgraphicalrepresentation,automatedmodel
generation,parallelprocessing,and FMESarebe-
ing combinedinto a tool set that will presumably
havethe powerto computethe reliability of large
fault-tolerantflight controlsystems.

In the followingsections,threesubmodelsof the
IAPSA architectureare introducedas a basisfor
discussingRMG, ASSURE,and FMES.The next
sectionisa briefdescriptionof IAPSA.

IAPSA Architecture

Tile integratedairframe/propulsioncontrolsys-
tem architecture(IAPSA) (ref. 1) w_ designed
to meetthe requirementsgeneratedwhenairframe
and enginecontrol tawsarecombinedin a high-
performancenfilitary aircraft. Featuresof the air-
craft are canardsand dual engineswith variable
inletsandvectoringnozzles.

Figure1is arepresentativeblockdiagramof the
IAPSAarchitecture.The architectureis basedon
theadvancedinformationprocessingsystem(AIPS)
buildingblockelements(ref.9). TheAIPSbuilding
blockshavebeendesignedto providefundamental
systemresourcesforawidespectrumofaerospaceap-
plications.Thebuildingblocksincludefault-tolerant
processors(FTP's),networkinterfaces(NI's),nodes,
links,anddeviceinterfaceunits (DIU's).TheFTP's
canbeconfiguredasquador triplexredundantcom-
puters. Nodesandlinks areusedto constructre-
pairablemeshnetworks.In operationa meshnet-
workisconfiguredasabus;that is,the linksoneach
nodearestaticallyenabledordisabledsuchthat ev-
erynodecanbe reached.TheI/O devicesarecon-
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nectedto thenetworkthroughtheDIU's. If a failure
occurson the network,thepathwith the failureis
disabledand an alternatepath is enabled.If this
repaircanbe accomplishedquickly,onemeshnet-
workcanservicetheentirevehicle.In practice,using
twonetworksisnecessary,oneto controltile aircraft
whiletheotheris repaired.

Link
Node

Networkinterface
QuadFFP

__'___ _ PhOCeSeSing

x__ ___]__i TriplexnetworkMeshFI'P

Figuret. IAPSAarchitecture.

A quadFTP hasthemajorresponsibilityforair-
framecontrol. Connectedto it are two I/O mesh
networks,oneof whichmustbefunctioningfor safe
operationof theaircraft. A triplex FTP is usedfor
eachenginewhereagaindualmeshnetworkshandle
theI/O traffic. A triplex meshnetworkprovidesa
highlyreliabledatapath for interproeessorcommu-
nication.In total,thearchitectureconsistsof 10pro-
cessorchannels,20NI's,50nodes,90links,36DIU's,
and300I/O devicesfor a total of 490components.
Thisdesigndoesnot includethe componentsneces-
saryto establishtheinterprocessorlink. Thispartof
thesystemhasnot yet beendesigned,but analysts
estimatethat about100NI's,nodes,andlinkswould
beusedto implementit.

Reliability Model Generator
The reliabilitymodelgeneratorwasdesignedas

a tool for systemdesigners."Working from a data

base of building blocks, designers can construct a
graphical block diagram of the system. When the

design is finished, an automatic failure modes-effects

analysis is performed with data associated with the

graphical building block objects. The result of the
FMEA is then translated into a reliability model in

the ASSIST language (refs. 5 and 6).

The automated FMEA is implemented with an

object-oriented data base approach conceived by The
Boeing Company (refs. 7 and 8). In the data base, a



buildingblockhasgraphicalattributesof thebuild-
ing block itself aswell as its inputs and outputs.
Thebuildingblockhasdataattributesofcomponent
modesandmodetransitionfunctions.Theinputand
output havedataattributesof effectmessagesand
outputtransitionfunctions.

Examplesof componentmodesare GOOD,
FAILED ACTIVE, andFAILED PASSIVE.Com-

ponent modes are closely related to reliability model
state variables. Mode transition functions control

mode state changes. The mode transition functions
are similar to the transition rules found in ASSIST.

A mode transition function can have as its input

the current mode, the value of the building block

input and output, and a rate. Thus, a mode tran-
sition function can specify that if a building block

is GOOD, then it may become FAILED ACTIVE at
rate A.

Building block output effect messages take on val-

ues such as NOMINAL, ERROR, and NONE. Out-

put transition flmctions control tile value of the mes-

sages. Output transition functions have as their

input the building block input and current compo-
nent mode. Output transition functions arc consid-

ered to bc an instantaneous evaluation of building

block behavior. These functions arc loosely related to

the death conditions found in ASSIST. For example,
an output transition function can specify that an out-

put effect is ERROR if either the component mode

is FAILED ACTIVE or an input effect is ERROR.

To perform tile automated FMEA, a building

block representing the system is formed with an

output that reflects the system's condition and with

inputs from other building blocks. RMG is then
directed to analyze the system for conditions leading

to an ERROR output of the system. A backward-
chaining technique is used to trace this failed state

throughout the system. As the state is traced, this

technique constructs the core of the reliability model.

Example 1- FTP Network Interface

Figure 2 is a diagram of the first example, which
focuses on the interaction of the FTP with the mesh
networks. Here the mesh networks are modelled as

single, repairable components. Three FTP channels
are connected to each network so that both networks

function in the event of two channel failures. Ini-

tially FTP channel 1 (CH1) is controlling network 1

(NET1) with network interface 1 (Nil) and CH4 is

controlling NET2 with NI6. The rcmaining connec-

tions are disabled. While appearing simple on the
surface, this model is rich in interdependencies.

Processing channel

NI21

NET1

CH3
NI4

Mesh networks

NET2

Network interface

Figure 2. Example 1: FTP network interface.

Because CH1 initially controls NET1 and CH4

controls NET2; four network interfaces (NI2, NI3,

NI4, and NI5) arc not used at this time. An FTP

channel failure causes the failure of its NI unit(s).
Thus, a failure of CH1 causes Nil to fail. The ef-

fect of this failure depends on whether or not. that

particular NI unit was controlling its associated net-

work at the time of the failure. For example, if CH1

fails from initial conditions (i.e., Nil is controlling

NET1), then two recovery mechanisms must be acti-

vated: one to repair the FTP by disabling CH1 and
the other to repair NET1 by enabling NI2 as con-

troller of NET1. If Nil fails from the initial state,
then a network recovery disables the failed link and
enables NI2 as the NET1 controller on the condition

that CH2 and NI2 have not yet failed. A subsequent

failure of CH1 results only in a recovery of the FTP
because CH1 is not the current network controller.

A reliability analysis tool must be able to track such
dependencies without burdening the user with cum-

bersome constructs or cryptic tricks. (Scc ref. 10 for

further discussion.)

Figure 3 is the RMG block diagram for exam-

ple 1. This model contains all the elements of figure 2
....with the addition of building blocks representing the

redundancy-management (RM) routines (FTP RM

and NETn RM) and the SYSTEM building block.
The following description lists the component at-

tributes and explains how RMG uses these attributes

to perform the automated FMEA.
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Processingchannels Networkinterfaces
Meshnetworks

,/ ,/ /

System module

_ Redundancy management modules

Figure 3. RMG diagram for example 1.

Tile FTP channels (CH1 4) have

Component modes:
Inputs:

Outputs:
Mode transition functions:

Output modes:

Output transition functions:

Component modes:

Inputs:
Outputs:
Mode transition functions:

Output modes:

Output transition functions:

the following attributes:

(GOOD, FAILED, REMOVED);

CH_STATUS;

IF (mode=GOOD) THEN (mode=FAILED) AT failure_rate;

IF (mode=FAILED) THEN (mode=REMOVED) AT recover_rate;
(NOMINAL, ERROR, NONE);

IF (mode=GOOD) THEN (CH_STATUS=NOMINAL)

ELSE IF (mode=FAILED) THEN (CH_STATUS=ERROR)

ELSE IF (mode=RE/VIOVED) THEN (CH_STATUS=NONE);

The FTP RM has the following attributes:

();
CH_STATUS_I,CH_STATUS_2,CH_STATUS_3, CH_STATUSA;
FTP_STATUS;

(NOMINAL, ERROR);

IF number_of ((CH_STATUS_I=NOMINAL),

(CH_STATUS_2=NOMINAL),

(CH_STATUS_3=NOMINAL),
(CH_STATUS_4=NOMINAL)) >

number_of ( (CH_STATUS_I =ERROR),

(CH_STATUS_2=ERROR),
(CH_STATUS_3=ERROR),

(CH_STATUS_4=ERROR)) THEN
FTP_STATUS =NOMINAL

ELSE

FTP_STATUS=ERROR;
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The FTP RM blockis an instantaneousevaluationof the stateof the FTP and thusdoesnot require
componcntmodesor modetransitionfunctions.TheRMG providesa convenientnumber_offunctionthat
accumulatesthenumberof TRUEconditionsfoundin theargumentlist. Here,theoutputtransitionfimction
usesthenumber_offunctionto performa simplemajorityvoteevaluation.In thecaseof a quadvote,twoor
moreinputsreceivingERRORstatuscausetheFTP RM blockto transmitanERRORstatus.Theeffectof
arecoveryof afailedchannelis to sendaNONEstatus,whichprotectstheFTP fromfailureonasubsequent
channelfailure.

TheNI componentshavethefollowingattributes:
Componentmodes: (GOOD,FAILED);
Inputs: (CH_STATUS);
Outputs: (NI_STATUS);
Modetransitionfunctions: IF (mode=GOOD)THEN(mode=FAILED)AT failure_rate;
Outputmodes: (NOMINAL,ERROR);
Outputtransitionfunctions: IF (mode=GOOD)and (CH_STATUS=NOMINAL)THEN

NI_STATUS=NOMINAL
ELSE

NI_STATUS=ERROR;
Theformulationof theoutput transitionfunctioncausesthe NI componentto produceanerrormessage

outputwhenthe hostchannelfails. Thus,to thosecomponentsconnectedto the NI outputs,the NI itself
appearsto havefailed.

TheNETRM componentshavethefollowingattributes:
Componentmodes: (MODEl,MODE2.MODE3);
Inputs: NI_STATUS_I,NI_STATUS_2,NI_STATUS_3;
Outputs: NET_RM_STATUS;
Modetransitionfunctions: IF (mode=MODE1)and(NI_STATUS_I=ERROR)THEN

IF (NI_STATUS_2=NOMINAL)THEN
(mode=MODE2)AT recovery_rate;

ELSEIF (NI_STATUS_3=NOMINAL)THEN
(mode=MODE3)AT recovery_rate;

IF (mode=MODE2)and(NI_STATUS_2=ERROR)THEN
IF (NI_STATUS_3=NOMINAL)THEN

(mode=MODE3)AT recovery_rate;
Outputmodes: (NOMINAL,ERROR);
Outputtransitionfunctions: IF (mode=MODEl)THEN

(NET_RM_STATUS=NI-STATUS-I);
IF (mode=MODE2)THEN

T 2(NET_RM_STATb S =NI_STATUS _ );

IF (mode=MODE3) THEN
(NET_RM_STATUS =NI_STATUS_3);

The NET RM block uses the status outputs of the three NI components to determine its operating mode.

The operating mode corresponds to which NI (and therefore which FTP channel) is controlling the network.

The status of the controlling NI is propagated as the NET RM output to the NET component.

The NET components have the following attributes:

Component modes:

Inputs:

Outputs:
Mode transition functions:

Output modes:
Output transition functions:

(GOOD,FAILED);
NET_RM_STATUS;

NET_STATUS;

IF (mode=GOOD) THEN (mode=FAILED) AT failure_rate;

IF (mode=FAILED) THEN (mode=GOOD) AT recovery_rate;

(NOMINAL, ERROR);
IF (mode=GOOD) THEN (NET_STATUS=NET_RM-STATUS)

ELSE (NET_STATUS=ERROR);
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The NET componentis assumedto be infinitely repairable;that is, the NET hasinexhaustiblespares.
However,whenthe NET RM indicatesan NI failure,theNET propagatesanERRORindicationuntil the
NET RM replacesthefailedNI (if possible).

TheSYSTEMbuildingblockhasthefollowingattributes:

Componentmodes:
Inputs:
Outputs:
Modetransitionfunctions:
Outputmodes:
Outputtransitionfunctions:

TheSYSTEMbuildingblockcontainsanoutput
transitionfunctionthat modifiestheSYSTEMmode
fromNOMINALto ERRORin theeventthat either
bothnetworkoutputeffectmessagesareERRORor
theFTP RMoutputmessageisERROR.

TheSYSTEMbuildingblockisusedasastarting
pointfor theFMEA.Theconditionsin theSYSTEM
outputtransitionthat contributeto anERRORcon-
ditionarctracedback,assembled,andreducedto dis-
junctivenormalform.1Theseconditionscanthenbc
listedasDEATHIFstatementsin theASSISTmodel
description.Modetransitionfunctionsareresolved
andusedasmodelexpansionrules(calledTRANTO
rules)in ASSIST.

Results
Modelsof example1 wcrcboth mammllycoded

andautomaticallygeneratedwith RMG.Themod-
elsappearedto bevery different. RMG produced
anexhaustiveexpansionof the system.The man-
ually codedmodelwasmorecompactin a situa-
tionanalogoustocomparingmanuallywrittenassem-
blercodeto compiler-generatedcode.Thecomputed
reliability for the two modelsdifferedby a small
amount(fifth decimaldigit). Comparingthe mod-
clsfor equivalenceuncoveredan interestingdiscrep-
ancy. TheRMG-gcneratedmodelachieveda more
thoroughexpansionof thestatespace.In theman-
uallycodedmodel,somenetworkfailureswereinad-
vertentlyomitted.TheRMG-generatcdmodcItook
aboutfivetimesaslongto processbecauseof both

_Givenalogicalexpressionthatconsistsofa seriesofsub-
expressionsthatareconnectedbyANDorOR,disjunctive
normalformisa reductionof thelogicalexpressiontoone
thatisaseriesofsubexpressionsconnectedbyORwherethe
subexpressionscontainonlyANDlogicalfunctions.

();
NET_STATUS_l, NET_STATUS_2, FTP_STATUS;

SYSTEM_STATUS;

(NOMINAL,ERROR);

IF ((NET_STATUS_I=NOMINAL) or
(NET_STATUS_2=NOMINAL)) and

(FTP_STATUS=NOMINAL) THEN

(SYSTEM_STATUS=NOMINAL)
ELSE

(SYSTEM _STATUS=ERROR);

the size of the model representation (thc ASSIST
code) and the larger state space that RMG covered.

The automatically generated model size is almost

three times larger than the manually coded model
(see table I).

Table I. Example 1 Performance Metrics

Parameter

Number of statcs

ASSIST time
SURE time

Model

Manually
coded

1555

105 sec
420 scc

RMG

generated

4466

1810 sec

633 scc

Discussion

The particular diagram shown in figure 3 is not an

ideal graphical representation. Having the display of

subcomponcnts (such as the NI's) somehow represent

the particular relationship between the subcompo-
nents and their parent components is preferred. For

example, the NI communicates with an FTP channel

and is critically dependent on the FTP channel. The
NI is a subcomponent and should bc viewed as such.

(See fig. 2.)

Redundancy management routines arc more diffi-

cult to represent. A redundancy management routine
is what turns a discrete set of computer channels into

a fault-tolerant computer. Yet, the redundancy man-

agcment routine is not a component typically pic-

tured in a block diagram as it is in figure 3. As for

the FTP, the FTP RM might be better expressed by
explicitly showing the interchannel linkages and vot-

ers as subcomponents that are part of the actual FTP

channel architecture. However, this type of cxprcs-



siondoesnot workforthe NET RM.TheNET RM
organizestheNI's,whicharepartofanFTPchannel,
andtile meshnetworkintoa fault-tolerantnetwork.
Asmodelledin this example,networkrecoveriesare
generatedin both theNET RM andtheNET com-
ponent. This adaptationwasunavoidablebecause
of limitationsin the versionof RMG usedto gen-
eratethis example.Whenconsideringa betterway
to representtheNETRM, it isdifficultto imaginea
cleanconstructthatcanbeaddedtoeachcomponent
of thisassemblageandbeableto describetheNET
RMfunction.Theredundancymanagementroutines
arethusbestdescribedasseparateobjectswhoseat-
tributescanbe relatedto othercomponentswith a
graphicaldevicesuchascoloror auniqueicon.This
conceptwill beconsideredin futureversionsof the
software.

Example 2: Nodes, Links, and Devices

Figure 4 illustrates a problem generated to test

the capability of ASSURE. The system is an evo-

lution of example 1 with tile addition of a two-layer

network and I/O devices. A mesh network could not

be modelled initially because of the difficulty in ex-

pressing the network regrow algorithm in the ASSIST

langnlage. (This difficulty was later rectified. See
section entitled "Failure Modes-Effects Simulation.")

The I/O devices are quad redundant, use majority

voting, and have redundancy management routines
similar to those of FTP.

ASSURE

Given the capability to automatically generate
a model, the problem immediately becomes one

of computing tile extremely large models that will

certainly follow. The ASSIST/SURE combination

has the drawback that the entire state space must

be generated by ASSIST and searched by SURE.
While methods of pruning the state space and path

depth have bcen developed for both ASSIST and

SURE, modest models of a few dozen interdependent

components quickly tax current workstations.

The ASSIST modelling language has been com-
bined with the SURE solution technique in a relia-

bility analysis tool (ASSURE) in which state-space
storage requirements are minimized. The SURE so-
lution technique provides for the calculation of a

Markov model as the cxpansion of a series of indepen-

dent paths (ref. 4). The ASSIST modelling language

describes how these paths are grown (ref. 5). In
ASSURE, the ASSIST language is translated into C,

linked with SURE solution procedures, and executed

to solve the model. The state probabilities can then

bc calculated as the model is grown. Two mecha-
nisms are available to reduce model size. With ac-

cess to the state probabilities, an informed decision

can be made as to when to terminate path growth
(e.g., when state probability <10-t4). Also, be-

cause the only state of consequence at any time is

the state being expanded, when expansion is com-

plete, the state can be discarded. Thus, ASSURE

does not need to maintain the complete state space

in memory. Also, because the paths through the
model are independent, the ASSURE program can

be parallelized.

(_ FTP channel

1 Network interface

-- Link

• Node

/x Device A

O Device B

O Device C

O Device D

Figure 4. Example 2: FTP network interface with two-layer
network and I/O devices.

Results

ASSIST produced a reliability model for the

system in figure 4; the model contained over

40 000 states and 1 000 000 transitions (with no prun-

ing). Direct comparison with ASSURE is not possi-
ble because ASSURE does not aggregate states when

it produces the model. Model statistics (reliabil-

ity and pruning bounds, number of pruned paths,

7



TableII. Example2PerformanceMetrics

Processor SUREmodelsize Runtime,hr Memoryusage
ASSIST/SURE 27Mbyte 11.50
ASSURE(Serial)

SUN3/150
SUN3/i50

100Mbyte
NA 0.60 1Mbyte

ASSURE(Parallel) 32iPSC/860 NA 0.01 1Mbytepernode

and pruningerror) for SUREand ASSUREwcrc
identical;thus, ASSUREcomputedthe modelcor-
rectly. ASSUREexistsboth in serialand parallel
form.ThetestrunsfortheserialversionofASSURE
andASSIST/SUREwereperformedonaSUN3/150
processor.Theparallelversionof ASSUREwasexe-
cuted on a 32-node iPSC/860 hypcrcube. Tile serial
ASSURE program execution was 10 times faster and

used 100 times less memory than ASSIST/SURE.

Parallel ASSURE increased this performance another

100 times. (See table II for details.) Overall, a

speed increase on the order of 3 orders of magnitude
is realized over the original ASSIST/SURE solvers.

The processors in the hypercube are typically over
90 percent utilized.

Note, ASSURE is a prototype and thus does not

perform extensive error checking (as does SURE).

If extensive error checking were performed it would

reduce the observed improvement. However, given

the degree of efficiency of the parallel version, a
great deal of improvement will always be obtained
with parallelization. Serial ASSURE benefits from

not having to maintain the complete state space in
memory while computing. As soon as the state space

outgrows available physical memory, ASSIST/SURE

suffers performance degradation due to swapping of
virtual memory.

Failure Modes-Effects Simulation

As previously mentioned, expressing the mesh

network regrow algorithm in the ASSIST language
is difficult. Two possible methods are exhaustive

enumeration (which is ahnost immediately ruled out)

and the division of the algorithm into discrete steps.
The division method is possible but presents a con-

fusing model because each step in the process must

be assigned a rate and therefore produces another

state with subsequent children states.

An alternative approach takes advantage of the

ASSURE translation of ASSIST into C code. Thus,

the regrow algorithm can be coded in a C procedure
and ASSURE can reference this procedure at the

appropriate time. Studying this approach revealed

that an extension of the ASSIST syntax was nec-

essary. 151rther work using the extension to ASSIST

led to an approach in which the concept of automated

FMEA fostered by RMG is incorporated ms C code in

ASSURE. This concept is the failure modes-effects
simulation.

ASSIST Extensions

The basic components of an ASSIST model de-

scription are the state vector, model expansion rules,
and model termination rules. The reliability model

is produced by repeatedly applying the model ex-

pansion rules to a state vector and thus creating new
state vectors. The process continues until the list

of state vectors is exhausted. A model expansion

rule (called a TRANTO statement) is composed of a
conditional expression, a state translation expression,

and a rate. A transition in a reliability model is thus

completely defined by its starting state (identified by

the conditional expression), its ending state (defined
by the translation expression), and the rate at which

the transition occurs. Model growth is terminated by

checking the new state against the model termina-
tion rules (conditional expressions called DEATHIF

statements). Death states are not expanded. System

unreliability is calculated as the total probability of
entering a death state before the end of the mission
time.

The ASSIST language was extended to allow ref-
erence to two types of C functions termed conditional

functions and effect functions. A conditional func-

tion takes as input the state vector and returns a
value of TRUE or FALSE. Conditional functions are
used in DEATHIF statements and the conditional

part of TRANTO statements. An effect function is

used in place of the state translation expression of a
TRANTO statement.

Figures 5(a) and 5(b) show models of a simple

quad FTP in standard ASSIST (fig. 5(a)) and ex-
tended ASSIST (fig. 5(b)). In standard ASSIST,
the model begins with the declaration of two tran-
sition rate constants. This declaration is followed

by a SPACE statement that defines the state vector

as two four-element arrays (CH_G and CH_B). These
arrays are of type Boolean and indicate whether FTP

channels are GOOD (CH_G) or BAD (CH_B). In the
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STARTstatement,the statevectoris initializedto
all channelsbeingGOOD.TheDEATHIFstatement
suppliesa majorityvoteterminationcondition.Fi-
nally,twoTRANTOstatements(IF... TRANTO...
BY ... ;) supplymodelgrowthrules.TheTRANTO
statementsarcembeddedinaFORlooptoscaneach
elementofthestatevectorarrays.

CH_Fail_Rate= 1.0E-4;
FTP_Recovery=3.0E4;
SPACE=(CH_G:array[1..4],CH_B:array[l..4]);
START=(4of 1,4of0);

IN_USE= 4;
ERROR---8;
RECOVERING= 16;
ELIMINATED= 32;

Thesevaluesrepresentsinglebitsin thestatevariable
andcanbecombinedto definea component'sstate.
Thus,a componentcanbeGOOD(with state= 1)
or a componentcanbe GOODand IN_USE(with
state= 5). TheGOOD+ IN_USEvalueisusedto
initializethestatevariablesin theSTARTstatement
in figure5(b). Definingmacrosto operateon the

DEATHIFCH_B[1]+CH_B[2]+CH_B[3]+CH_B[4]>= statevariablesisoftenhelpful.Thefollowingmacros
CH_G[I]+CH_G]2]+CH_G[3]+CH_G[4]; areusedin theFMEScode:

FORi=1,4
IFCH_G[i]=ITRANTO

CH_G[i]=0,CH_B[i]=1BYCH_Fail_Rate;
IFCH_B[i]=!TRANTO

CH_B[i]=0BYFTP_Recovery;
ENDFOR;

(a)FTPmodelinstandardASSIST.

CH Fail_Rate= 1.0E-4;

FTP Recovery = 3.0E4;

SPACE = (FrP, CH: array[1..4]);

START = (5, 4 of 5);
DEATHIF ERRFTP0;

FOR i= 1,4

IF GOOD(CH[i]) TRANTO

CH_FailEff(i) BY CH_Fail_Rate;

IF RECOVER(FTP) TRANTO
FFP RecEff0 BY FTP_Recovery;

ENDFOR;

(b) FTP model in extended ASSIST.

Figure 5. Simple quad FTP models.

In the extended ASSIST model (fig. 5(b)), notice
the conditional function calls ERRFTP0, GOOD(),

and RECOVER() and effect function calls
Cn_FailEff 0 and FWP_RecEff0. The model in fig-

ure 5(b) also reflects a different modelling strategy,
which is a natural result of the FMES process. Con-
sider the state vector. Two entities are modelled in

this system: actual physical components called chan-

nels (CH[i]) and a super component called FTP. The

SctRecovery(v):

SetFailError(v):

SetElim(v):
SetNotInUse(v):

GoodInUse(v):

ErrorInUse(v):

Sets the RECOVERING bit.

Sets the ERROR bit and

clears the GOOD bit.

Sets the ELIMINATED bit.

Clears the IN_USE bit.

Tests state variable for both

GOOD and IN_USE bits.

Tests state variable for both

ERROR and IN_USE bits.

A Simple FMES

Figures 5(a) and 5(b) arc practically identical

with thc exception that functions written in stan-
dard ASSIST have been replaced by function calls in
extended ASSIST. Conditional functions can take as

parameters one or more state variables. Effect fimc-

tions can pass an integer argument for array index-

ing. The primary benefit of using extended ASSIST
is that complex state transitions such as a network

repair can be coded in algorithmic form instead of the
exhaustive enumeration sometimes necessary with

standard ASSIST. A secondary benefit is that the

resulting ASSIST model is less complicated and thus
more readable.

The ASSIST TRANTO statement contains three

expressions: a condition, a destination state transla-

tion, and a rate. The failure modes-effects simula-
tion describes the destination state translation as a

chain reaction among the components of the system

using the concepts of component modes and mode
effect messages developed in RMG. The FMES func-

tions are grouped into two categories: effect functions

FTP is a logical entity whose state is a collective (which are referenced in ASSIST TRANTO state
translation expressions) and dependency functions.

function of the channels' states. Also, these compo- An effect function links the FMES with the ASSIST
nents no longer have simple Boolean values but can

model. The dependency functions propagate the el-
take on a range of values as follows:

fect throughout the system while making the appro-

GOOD = 1; priate state changes. Figure 6 shows the FMES for

ACTIVE = 2; the model of figure 5(b).



Accordingto the first TRANTO in figure 5(b),

if a CH is GOOD, then it can fail with effect deter-

mined by CH FailEff(). The filnction CH_FailEff first
modifies the channel's state to FAIL + ERROR, then

it calls dependency function FTP_Dependson_CH 0.

(See fig. 6.) The FTP dependency function uses the
voter majority rule to determine the state of the FTP.

FTP should recover if any channel is producing er-
rors, and FTP is failed if the error-producing chan-

nels outnumber the good channels. Setting FTP to a

recovering state enables the second transition, in fig-

ure 5(b); this transition uses FTP_RecEff 0 to obtain

the effect of tile FTP recovery. In FTP_RecEff0,

error-producing channels are set to not in use and

eliminated from the system.

CH_FailEff(my_id)

int my_id;

{
SetFailError(CH[my_id]);
FTP_DEPENDSON_CH0;

}
FTP_DEPENDSON_CH0

{
int i,g,b;
g=0; b=0;

for (i= 1; i<=4; i++)
{

if (Goodlnuse(CH[i]) && !Error(CH[i])) {g++; }

else if (Errorlnuse(CH[i])) {b++;}

}

FTP = GOODIIINUSE;

if (b!=0) (SetRecover(FTP); }

if (b>=g) II (g==0) {SetFailError(VFP); }

}
Vl'P_RecEff0
{

int i;

for (i= 1; i<=4; i++)
if (Errorlnuse(CH[i]))

I
SctNotlnuse(CHli]);

SetElim(CH[il);

}

FTP_DEPENDSON_CH0;
]

Figure 6. FMES C code for figure 5(b).

Modelling With FMES

In the simple quad system, two types of transi-

tions are modelled: failure transitions and recovery

transitions. (However, others are possible.) Failure

transitions can occur at any time to any component.

The effect of the failure on the system state is deter-

mined by that componcnt's fail effect flmetion. Re-
covery transitions are most often enabled by a com-

ponent's fail effect fllnction (although they can be

triggered by other effects). A recovery is brought

about by a super component. A super component

is a set of components that have bccn grouped to-
gether to increase reliability. The quad fault-tolerant

computer is an example of a super component.

Super components are responsible for redundancy

management. When a component fails, its fail effect

flmction sets the RECOVER mode descriptor of that

componcnt's super component. A good example is

the quad redundant fault-tolerant computer. This
super component is called FTP and is composed of

four channels. When a channel fails, its fail effect

function sets the RECOVER flag in FTP. The FTP

recovery effect functions are then called during the

calculation of the now enabled recovery transition.

Super components do not have failure transitions,

yet they arc able to fail. Again, with the FTP as

an example, majority voting is used among its set
of channels to mask and detect errors. Whether

or not the FTP super component is operating

properly is a function of the state of the set of

CH's assigned to the FTP as calculated in function

FTP_DEPENDSON_CH 0. A function sensing the
state of FTP is constructed and called as a death

condition. If the death condition is met, the FTP has

failed and thus the system (in this case) has failcd.

A brief description of how the FMES is used in
ASSURE is as follows:

1. A set of mode descriptors and effect messages is
defined and a state vector constructed.

2. Fail effect and recovery effect functions are de-
fined.

3. Condition functions for failure and recovery tran-
sitions are defined.

4. Death condition functions are defined.

5. The model is executed for each component as
follows:

a. IF FAIL_CONDITION 0 TRANTO

FAIL_EFFECT 0 BY RATE.

b. IF RECOVERY_CONDITION 0 TRANTO

RECOVERY_EFFECT 0 BY RATE.

c. Test for DEATH_CONDITION 0 for each new
state.

d. Compute reliability as model is expanded,

pruning where possible.

6. Print results.

: 10



Example 3: Mesh Network

Figure 7 illustrates the system configuration for

this mesh network example. Two network parti-
tions consisting of 7 nodes and 14 links interface

FTP with 4 quad redundant I/O groups. The mesh
network uses a regrow algorithm to repair failures.

The I/O devices connect to the network through

device interface units. This system contains over

80 components and 7 different redundancy man-

agement groups or super components (FTP, NET1,

NET2, and four I/O devices). The computer, two
networks, and four I/O devices are reconfigurable

and controlled by the seven separate redundancy

management routines. The recovery of a simul-
taneous failure of a channel of the fault-tolerant

computer and a node of one of the networks re-

quires two separate operations. However, the re-

covery from a simultaneous link and node failure
on the same network can bc accomplished in one

operation.

Component mode descriptors and mode

message. As previously mentioned, the FMES

is derived from the automated FMEA as used by

RMG; thus, a set of mode descriptors and mode
messages must be defined. Although different mode

-. O

(_) FTP channel
" Network interface
-- Link

• Node
Device interface

_" Device A
O Device B
© Device C
C_ Device D

Figllre 7. Example 3: Mesh network.

descriptors and messages can be defined for each component, it is best to seek, if possible, a set of common

descriptors and messages that can bc used throughout the system. The system in figure 7 is used as an example

because it is large and complex and the set of descriptors and messages needed to define that system should

suffice for most others.

Mode descriptors are implemented as bit values that have a meaning associated with their TRUE (set) amt

FALSE (reset) values. In the following descriptions, the first value is associated with TRUE and the value in

parentheses is associated with FALSE.

GOOD (FAILED): Describes the component's physical state. If the component is GOOD, it

can FAIL at any time.

ACTIVE (PASSIVE): Describes the nature of failure. An ACTIVE failure is able to produce

erroneous behavior. A PASSIVE failure is analogous to failing safe.

ERROR (BENIGN): States that detectable errors arc being produced.

IN_USE (NOT_IN_USE): Used primarily for modelling spares. For example, a component (such as

a link) that is NOT_IN_USE might not affect the system with an active

failure. Super component recovery effect functions control the value of this

descriptor.

RECOVERING (NORMAL): Used with super components to enable recovery transitions.

ELIMINATED (MEMBER): Used in recovery effect functions to mark a component as having bcen

removed from the set of good components.

A component typically begins in a GOOD + IN_USE state. A failure can cause it to transition to FAILED

+ IN_USE + ERROR and can cause its super component to transition from GOOD + IN_USE + NORMAL

to GOOD + IN_USE + RECOVERING.
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Modemessageshavemutuallyexclusivevalues. Becausethe modemessagesarenot part of the state
variable,theycanhavesimilarnamesto conveysimilarmeaning.

NOMINAL:

FAIL:

ERROR:

NONE:

NIU (Not In Use):

Indicatesthat thesendingcomponent'scurrentoperationis withinspecification.

Indicatesthat thesendingcomponenthasfailed.

Indicatesdetectableerroneousbehavior.

Indicatespassivefailure.

Indicatesthat thesendingcomponenthasbeenswitchedto standby(asaspare).

Fail effect functions. A fail effect function is named by attaching the term "_FailEff" to a component's

state variable name. For example, component CH has fail effect function CH_FaiIEff. A fail effect function

has three stages. The first stage alters the component's mode, which can be, for example, from GOOD +

IN_USE to FAILED + INUSE + ERROR. A second function can then be called to send the appropriate effect

messages to this component's neighbors. This function is named by attaching "_Dependents" to the component

name (e.g., in CH_Dependents). Finally, a component calls zero, one, or more super component dependency

functions. The super component dependency functions can bc contained in the "_Dependents" function, but

it is best to separate them because the super components are different from normal components.

Dependency functions. A primary dependency function interprets a component's mode and sends a

message reflecting the component's new state to those other components that are immediately affected. Tile

messages arc sent through use of secondary dependency function calls of the form "X_Dependson_Y(XAd, Y_id,

Y_message)," where Y is the local component. Thus, the function call X_Dependson_Y(X_id, Y_id, Y_message)
is found in flmction Y_Dependents.

For example, consider the NI which resides in a channel of tile FTP (CH). As a result of executing a failure

transition for component CH[2], fail effect function CH_FailEff(2) is called. This function then calls the primary

dependency flmction CIt_Dependents(2). Because two NI's reside in CH[2], two secondary dependency flmction
calls are made as follows:

NI_Dependson_CH (2,2,FAIL);

NI_Dependson_CH(3,2,FAIL);

The secondary dependency function alters tile receiving component's state and then calls that component's

primary dependency function. The effect of the failure is thus propagated throughout ttle system.

A super component dependency function (e.g., FTP_Dependson_CH) differs substantially from a normal

component's dependency function. This difference occurs because a super componcnt must have access to the

state of all components in its domain. For example, FTP _Dependson_CH must bc able to read the state of each

of its channels to determine whether the voter function is error free. Also, in the case of the network, a single

failed node has the effect of taking the network off-line until the network repairs. Thus, the super component

function NET_Dependson_NODE must be able to alter the state of all nodes and links in the network to set
them to NOTXN_USE.

Recovery effect functions. A recovery effect function is named by attaching the term "_RecEff" to the

super component's name (e.g., FTP RecEff). A recovery effect function examines and alters, if necessary, the

state of each of the components in its domain. For example, after failing, a CH is in mode FAILED + IN _USE

+ ERROR. The recovery function changes this to FAILED + NOT_N_USE + ERROR + ELIMINATED;

the device is now no longer in use or part of the spare pool. The recovery function then calls the component's

primary dependency function to propagate the effect of the mode changes.

Effect of CH[1] failure. The complete FMES for this system is not given here because of the amount of

detail. The following description explains what happens when CH[1] fails:
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CH_FAILEFF0:

CH_Dependents0:

FTP_Dependson_CH0:

NI_Dependson_CH():

NETl_Dependson_NI0:

NODE_Dependents():

DIU_Dependson_NODE0:

DEVIl_Dependson-DIU():

DEVICE_Dcpendson-DEVn():

Uponreturnto ASSIST,thefollowingstateexists:

CH[1]is setto ERROR.NI[1]is setto ERROR.
FTP is set to RECOVERING.NET1 is set to
RECOVERING.

All NODES,LINKS,DIU's, and DEVICESon
NET1aresetto NOT_IN_USE.

A componentsuch as the DEVn can be both
GOODandNOT_IN_USEandstill fail to a stateof
FAILED, ERROR,and NOT_IN_USE.If this fail-
ure occursupon restorationof the networkwhen
the DEVn status is changedfrom NOT_IN_USE
to IN_USE,then the super componentfunction
DEVICE_Dependson_DEVndetectsthe error and
setsa recoveryfor tile DEVICE.

CHIll setto FAILED+ IN_USE+ ERRORstatus.CH_Dependents0is
calledto propagatestateChange.SupercomponentFTP_Depcndson-CH0
iscalled.

NI_Dependson_CH0 iscalledwithFAIL message.
Voterstatuschecked.FTP setto RECOVERINGbecauseof erroron
CH(1).
NI[1]setto FAILED+ IN USE+ ERRORstatus(effectof FAILmessage
fromCH).NETl_Dependson-NI0iscalledwith ERRORmessage.

NI[1]is controller(IN_USE)andsendsERROR,soNET1sets
RECOVERING.NET1alsosets all children (NODES and LINKS) to

GOOD + NOT_IN_USE. NODE-Dependents0 and LINK_Dependents0

functions are called with NOT_IN_USE message. (LINK_Dependents arc

not traced from this point.)

For each NODE, message from parent NET is interrogated and corre-

sponding effect message is sent to the node's attached DIU (if one exists).

In this case, four nodes send a NOT_IN_USE message to their DIU's.

In response to the NODE message, the DIU sets its mode to NOT_IN_USE.

Device component function, DEVn_Dependson_DIU(), is called with

NOT_IN_USE message.

In response to the NOT___USE message sent from the DIU, tile I/O

device sets its mode to NOT IN_USE also. Because the I/O devices are

quad redundant, super component DEVICE_Dependson-DEVn0 is called.

Voter status checked. DEVICE is not set to RECOVER because device

error is not present (being NOT_IN_USE is not an error condition).

equivalent, and direct comparison with other tools

that would aggregate these states is difficult. How-

ever, that this system of dynamically reconfiguring
mesh networks was analyzed in reasonable time on an

ordinary computer is an accomplishment that has not
been achieved before. Parallel ASSURE (again using

a 32-node hypercube) solved this model in a scant
1.3 minutes. It is expected that large fault-tolerant

systems, typical of those found in today's avionic ar-

chitectures, can now be analyzed using FMES and
Parallel ASSURE.

Concluding Remarks

The reliability model generator (RMG) and

ASSURE are prototype programs that have been

developed to test advanced concepts for the reli-

Results. Because the FMES is an extension of ....ability analysis of future fault-tolerant flight con-

ASSIST, results are only available for serial ASSURE

and parallel ASSURE. When run on a SUN 3/150

processor, serial ASSURE took 6.2 hours and pro-
duced over 27 million transitions. If states are not

aggregated, then the number of transitions is equiv-
alent to the number of states. Many of the states are

trol systems. Results of tests using RMG indicate
that the automated failure modes-effects analysis

(FMEA) algorithm embedded in RMG successfully
generated an accurate reliability model from a graph-

ical block diagram of the system. A drawback of
this technique may be that the model size is almost
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three times larger for the automatically generated

graphical model.

Combining the processes of the ASSIST and

SURE programs, the ASSURE program eliminates

the need to produce and maintain the complete

model state space in memory. Solving a model

with over 40 000 states and 1 000 000 transitions, the

ASSURE program execution was 10 times faster than

ASSIST/SURE and used 100 times less memory. An-

other feature of ASSURE is that its solution tech-

nique can be parallelized and thus can be executed

on parallel computers such as the hypercube. When

this same model was run on a 32-node hypercube, an-

other hundredfold increase in performance over serial

ASSURE was obtained.

To better model complex redundancy manage-

ment processes, tile ASSIST language syntax was ex-

tended in ASSURE to allow function calls to C lan-

guage procedures. Drawing on the automated FMEA

approach pioneered with RMG, a modelling tech-

nique called failure modes-effects simulation was used

to model a large system consisting of one quad fault-

tolerant computer, two mesh networks, and several

quad redundant input/output devices. The system

contained over 80 components and 7 redundancy

management groups overall. This system produced

over 27 million transitions and took 6.5 hours to

complete using the serial version of ASSURE. The

parallel version was completed in 1.3 nfinutes.

These results indicate that the techniques are

available to represent and solve large, complex re-

liability models of integrated and distributed flight

control systems.

NASA Langley Research Center

Hampton, VA 23681-0001

July 23, 1992
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